Name: Period:	_Date:	
---------------	--------	--

VELOCITY AND ACCELERATION NOTES

velocity is	in a given	·
 Therefore, kn 	lowing the velocity of a moving object me	eans you know the
		, and
	·	
		
Example: An airplane	e is moving 885 km/h west to California.	
	an affect the velocity of a moving objec	t without affecting the
S	peed.	
Acceleration is the	in velocity of an obi	iect.
Acceleration is the _ An object acc	in velocity of an obj elerates if it:	ect.
An object acc		ject.
An object acco	elerates if it: acceleration)	
An object accordancespeeds up (slows down (ne	elerates if it:	

Ex: A car accelerates from rest to 27 m/s in 9 seconds. Find the car's average acceleration.

Total time

Acceleration = Final velocity - Original velocity

Original speed = 0 m/s

Acceleration = $27 \text{ m/s} - 0 \text{ m/s} = 27 \text{ m/s} = 3 \text{ m/s}^2$

Final speed = 27 m/s

9 s 9 s

Time = 9 seconds

Note: If speed is measured in meters per second (m/s) and time is measured in seconds, the unit of acceleration is meters per second per second, or m/s^2 . Practice (show your work):

 A falling raindrop accelerates from 10 m/s to 30 m/s in 2 seconds. What is the raindrop's average acceleration? Final speed: Original speed: Time:
2. What is a race car's average acceleration if its speed changes from 0 m/s to 40 m/s in 4 seconds?
3. How can a car be accelerating if its speed is constant at 65 km/h?